

CORNET Call for Proposals: International Collective Research

--- Project idea ---

Subject:	Residual stress-adjusted drilling
Coordinator:	Dresden University of Technology, Institute of Production Engineering, Chair of Forming Technology, Zeuner-Bau, 01062 Dresden, Germany
Other applicant(s):	Fraunhofer Institute for Ceramic Technologies and Systems, Dresden-Klotzsche (IKTS-MD), Maria-Reiche-Str. 2, 01109 Dresden, Germany
Target group:	The areas of application would range from general mechanical engineering, automotive and aircraft construction, engine construction to power plant and medical technology.
Proposal summary:	Live detection of residual stress during machining and simulation-based adaptive control of the cutting parameters for targeted adjustment of residual stress states
	The ability to introduce residual stresses that increase edge zone strength during turning using existing technology significantly increases the range of applications. Longer component service life - especially for dynamically stressed components - can be achieved more cost-effectively.
	Relevant for: thin-walled components, components with unknown pre-treatment, components with unknown condition, high-precision parts, highly stressed parts (e.g., drive shaft), components that are difficult/expensive to replace (rotor shafts of wind turbines, ships, space).
Advantages for trade and industry:	Increased strength without an extra process step (such as deep rolling) for almost all components, Elimination of a process step, hardening by turning. Increased service life for components with high pressure loads, reduction of failure rates for components with high pressure loads, elimination of hard turning, First-part- perfect, Process-reliable machining without knowledge of the component's previous life/condition like upcycling und repair of expensive parts
Dissemination concepts:	This process could be used whenever the operational strength of a metallic material in the form of a rotationally symmetrical body needs to be increased.
Profile of additional partners:	Machining by turning, expertise in turning tool
Contact:	Name: Dr. Ulana Cikalova
	Organisation: Fraunhofer Institute for Ceramic Technologies and Systems, Dresden-Klotzsche (IKTS-MD)
	E-mail: ulana.cikalova@ikts.fraunhofer.de
	Tel: +49 351 88815 517