

<u>Software</u> for feasibility analysis and optimized design of autonomous electric vehicle fleets for on-demand ridepooling or delivery services

SMEs needed:

1) Producer of such vehicles, 2) mobility planning consultants

26.11.2018 Werner Rohlfs

Chair for Electrochemical Energy Conversion and Storage Systems

Electrochemical Energy Conversion and Storage System Group

Motivation: Such a tool is currently missing but needed for risk management and planning purposes

- <u>No driver costs</u>: Autonomous electric vehicles at town district level potentially economical
- Who is involved?
 - Vehicle producers (often SMEs)
 - Vehicle customers: Fleet operators
 - Public transport organizations
 - Urban logistics & delivery companies
 - City municipalities (Tender for services)
 - Mobility planning consultants

Optimisation of interconnected parameters to reach technical and economic feasibility in a given town district

- High costs of autonomous electric vehicles demand cost optimisation to become realistic:
 - □ Esp. batteries and charging infrastructure
- <u>Complex optimisation</u> (interconnected parameters):
 - <u>Vehicle</u> (battery characteristics, etc.)
 - □ journeys (types, frequencies, ranges, time, purpose, etc.)
 - □ <u>Charging:</u> Where and how?
 - Centralised or decentralised?
 - Synergies with existing infrastructure?
 - □ <u>Operations:</u>
 - Economically linking service requests with vehicles
 - Limits of the vehicle battery

4 22.11.2018 | ISEA Chair for Electrochemical Energy Conversion and Storage Systems

Example: Mitsubishi i-MiEV

Source: pushevs.com

Project partners and their contributions

Scope of the intended research project

Analysis	 Data regarding the mobility in a respective town district technical parameters regarding vehicle, battery, charging infrastructure Etc.
Deduction	 Boundary conditions, patterns, indicators, probabilities Substitution potential by ridepooling / delivery services with autonomous electric vehicle fleets Respective technical, operational, and economical requirements
Software	 Simulation and optimisation of operations of a given fleet and town district Considering boundary conditions of electric driving and <i>stochastic demand</i> models*
Validation	 If possible: Within existing project in a town district by real data Alternative: Plausibility check by comparison of calculated simulative with archetypal existing realisations

**Stochastic Models:* Mathematical models involving probability. Probability Distribution is used to represent uncertain factors.

Expected project results

MODELS:

<u>Quantifying</u> demand, technical & economic feasibility For ridepooling or delivery services Based on known / deducted / assumed data

Tool(s):

<u>Guide on planning parameters</u> for the vehicle battery and corresponding charging stations

Software:

Software-based consulting & strategic planning of autonomous electric vehicle fleets and associated charging infrastructure for on-demand ridepooling or delivery services

Thank you for your attention

Werner Rohlfs

Contact

ISEA Tel.: +49 241 80-49399 wro@isea.rwth-aachen.de batteries@isea.rwth-aachen.de

Chair for Electrochemical Energy Conversion and Storage Systems Univ.-Prof. Dr. rer. nat. Dirk Uwe Sauer RWTH Aachen University

Jaegerstrasse 17/19 52066 Aachen GERMANY

www.isea.rwth-aachen.de

